Reference | Year | Publication |
batista2006 | 2006 | Batista, J.; Godden, J. W.; Bajorath, J. Assessment of Molecular Similarity from the Analysis of Randomly Generated Structural Fragment Populations. J. Chem. Inf. Model. 2006, 46, 1937−1944, DOI: 10.1021/ci0601261. |
bender2004 | 2004 | Bender, A.; Glen, R. C. Molecular similarity: a key technique in molecular informatics. Org. Biomol. Chem 2004, 2, 3204−3218. |
bender2009 | 2009 | Bender, A.; Jenkins, J. L.; Scheiber, J.; Sukuru, S. C. K.; Glick, M.; Davies, J. W. How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space. J. Chem. Inf. Model. 2009, 49, 108−119, DOI: 10.1021/ci800249s |
dearden2009 | 2009 | Dearden, J. C.; Cronin, M. T. D.; Kaiser, K. L. E. How not to develop a quantitative structureactivity or structureproperty relationship (QSAR/QSPR). SAR QSAR Environ. Res. 2009, 20, 241−266 |
doucet2011 | 2011 | Doucet, J. P.; Panaye, A. QSARs in Data Mining. In Three dimensional QSAR Applications in Pharmacology and Toxicology; QSAR in Environmental and Health Sciences; CRC Press: Boca Raton, 2011; pp 253−266. |
eckert2007 | 2007 | Eckert, H.; Bajorath, J. Molecular similarity analysis in virtual screening: foundations limitations and novel approaches. Drug Discovery Today 2007, 12, 225−233 |
ehrlich2011 | 2011 | Ehrlich, H.C.; Rarey, M. Maximum common subgraph isomorphism algorithms and their applications in molecular science:a review. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 68−79. |
fang2004 | 2004 | Fang, K.T.; Yin, H.; Liang, Y.Z. New Approach by Kriging Models to Problems in QSAR. J. Chem. Inf. Comput. Sci. 2004, 44, 2106−2113. |
garey1979 | 1979 | Garey, R.; Johnson, D. S. Computers and Intractability: A Guide to the Theory of NPCompleteness; W. H. Freeman: New York, 1979. |
gonzalez2008 | 2008 | Gonzalez, M. P.; Teran, C.; SaizUrra, L.; Teijeira, M. Variable Selection Methods in QSAR: An Overview. Curr. Top. Med. Chem.2008, 8, 1606−1627 |
Hawe2010 | 2010 | Hawe, G. I.; Alkorta, I.; Popelier, P. L. A. Prediction of the Basicities of Pyridines in the Gas Phase and in Aqueous Solution. J. Chem. Inf. Model. 2010, 50, 87−96. |
katritzky2000 | 2000 | Katritzky, A. R.; Maran, U.; Lobanov, V.; Karelson, M. Structurally Diverse Quantitative StructureProperty Relationship Correlations of Technologically Relevant Physical Properties. J.Chem. Inf. Comput. Sci. 2000, 40, 1−18. |
katritzky2002 | 2002 | Katritzky, A. R.; Maran, U.; Lobanov, V.; Karelson, M. Structurally Diverse Quantitative StructureProperty Relationship Correlations of Technologically Relevant Physical Properties. J.Chem. Inf. Comput. Sci. 2000, 40, 1−18. |
kawabata2011 | 2011 | Kawabata, T. BuildUp Algorithm for Atomic Correspondence between Chemical Structures. J. Chem. Inf. Model. 2011, 51, 1775− 1787, DOI: 10.1021/ci2001023 |
liu2004 | 2004 | Liu, Y. A Comparative Study on Feature Selection Methods for Drug Discovery. J. Chem. Inf. Comput. Sci. 2004, 44, 1823−1828. |
martin2002 | 2002 | Martin, Y. C.; Kofron, J. L.; Traphagen, L. M. Do Structurally Similar Molecules Have Similar Biological Activity? J. Med. Chem. 2002, 45, 4350−4358, DOI: 10.1021/jm020155c |
nikolova2003 | 2003 | Nikolova, N.; Jaworska, J. Approaches to Measure Chemical Similarity a Review. QSAR Comb. Sci. 2003, 22, 1006−1026. |
oprea2001 | 2001 | Oprea, T. I.; Gottfries, J. Chemography: The Art of Navigating in Chemical Space. J. Comb. Chem. 2001, 3, 157−166. |
puzyn2009 | 2009 | Puzyn, T.; Leszczynski, J.; Cronin, M. T. D. Recent Advances in QSAR Studies: Methods and Applications; Springer: London, 2009 |
rahman2009 | 2009 | Rahman, S.; Bashton, M.; Holliday, G.; Schrader, R.; Thornton, J. Small Molecule Subgraph Detector (SMSD) toolkit. J. Cheminf.Online 2009, 1, No. 12, |
raymond2002 | 2002 | Raymond, J.; Willett, P. Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput.Aided Mol. Des. 2002, 16, 521−533. |
sun2011 | 2011 | Sun, Y.; Brown, M.; Prapopoulou, M.; Davey, N.; Adams, R.; Moss, G. The application of stochastic machine learning methods in the prediction of skin penetration. Appl. Soft Comput. 2011, 11, 2367−2375. |
tetko2009 | 2009 | Tetko, I.; Poda, G.; Ostermann, C.; Mannhold, R. Accurate In Silico log P Predictions: One Can’t Embrace the Unembraceable. QSAR Comb. Sci. 2009, 28, 845−849 |
todeschini2009 | 2009 | Todeschini, R.; Consonni, V. In Molecular Descriptors for Chemoinformatics; Mannhold, R., Kubinyi, H., Folkers, G., Eds.; Wiley VCH: Weinheim, 2009 |
tropsha2007 | 2007 | Tropsha, A.; Golbraikh, A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des.2007, 13, 3494−504. |
tropsha2010 | 2010 | Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inf. 2010, 29, 476−488 |
willett2005 | 2005 | Willett, P. Searching Techniques for Databases of Two and ThreeDimensional Chemical Structures. J. Med. Chem. 2005, 48,4183−4199, DOI: 10.1021/jm0582165. |
farinha2013 | 2013 | Farinha, C. M., KingUnderwood, J., Sousa, M., Correia, A. R., Henriques, B. J., RoxoRosa, M., Da Paula, A. C., Williams, J., Hirst, S., Gomes, C. M., and Amaral, M. D. (2013) Revertants, Low Temperature, and Correctors Reveal the Mechanism of F508delCFTR Rescue by VX809 and Suggest Multiple Agents for Full Correction, Chemistry & biology 20, 943955.Jul 25. |
pesquita2009 | 2009 | C Pesquita, D Faria, AO Falcão, P Lord, FM Couto 2009 Semantic similarity in biomedical ontologies. PLoS computational biology 5 (7), e1000443 |