August 27, 2018

Bibliographic References

 

Reference Year Publication
batista2006 2006 Batista, J.; Godden, J. W.; Bajorath, J. Assessment of Molecular Similarity from the
Analysis of Randomly Generated Structural Fragment Populations. J. Chem. Inf. Model.
2006, 46, 1937−1944, DOI: 10.1021/ci0601261.
bender2004 2004 Bender, A.; Glen, R. C. Molecular similarity: a key technique in molecular informatics.
Org. Biomol. Chem 2004, 2, 3204−3218.
bender2009 2009 Bender, A.; Jenkins, J. L.; Scheiber, J.; Sukuru, S. C. K.; Glick, M.; Davies, J. W. How
Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular
Descriptor Space. J. Chem. Inf. Model. 2009, 49, 108−119, DOI: 10.1021/ci800249s
dearden2009 2009 Dearden, J. C.; Cronin, M. T. D.; Kaiser, K. L. E. How not to develop a quantitative
structure­activity or structure­property relationship (QSAR/QSPR). SAR QSAR Environ.
Res. 2009, 20, 241−266
doucet2011 2011 Doucet, J. P.; Panaye, A. QSARs in Data Mining. In Three dimensional QSAR ­
Applications in Pharmacology and Toxicology; QSAR in Environmental and Health
Sciences; CRC Press: Boca Raton, 2011; pp 253−266.
eckert2007 2007 Eckert, H.; Bajorath, J. Molecular similarity analysis in virtual screening: foundations
limitations and novel approaches. Drug Discovery Today 2007, 12, 225−233
ehrlich2011 2011 Ehrlich, H.­C.; Rarey, M. Maximum common subgraph isomorphism algorithms and their
applications in molecular science:a review. Wiley Interdiscip. Rev. Comput. Mol. Sci.
2011, 1, 68−79.
fang2004 2004 Fang, K.­T.; Yin, H.; Liang, Y.­Z. New Approach by Kriging Models to Problems in QSAR. J.
Chem. Inf. Comput. Sci. 2004, 44, 2106−2113.
garey1979 1979 Garey, R.; Johnson, D. S. Computers and Intractability: A Guide to the Theory of NPCompleteness;
W. H. Freeman: New York, 1979.
gonzalez2008 2008 Gonzalez, M. P.; Teran, C.; Saiz­Urra, L.; Teijeira, M. Variable Selection Methods in
QSAR: An Overview. Curr. Top. Med. Chem.2008, 8, 1606−1627
Hawe2010 2010 Hawe, G. I.; Alkorta, I.; Popelier, P. L. A. Prediction of the Basicities of Pyridines in the
Gas Phase and in Aqueous Solution. J. Chem. Inf. Model. 2010, 50, 87−96.
katritzky2000 2000 Katritzky, A. R.; Maran, U.; Lobanov, V.; Karelson, M. Structurally Diverse Quantitative
Structure­Property Relationship Correlations of Technologically Relevant Physical
Properties. J.Chem. Inf. Comput. Sci. 2000, 40, 1−18.
katritzky2002 2002 Katritzky, A. R.; Maran, U.; Lobanov, V.; Karelson, M. Structurally Diverse Quantitative
Structure­Property Relationship Correlations of Technologically Relevant Physical
Properties. J.Chem. Inf. Comput. Sci. 2000, 40, 1−18.
kawabata2011 2011 Kawabata, T. Build­Up Algorithm for Atomic Correspondence between Chemical
Structures. J. Chem. Inf. Model. 2011, 51, 1775− 1787, DOI: 10.1021/ci2001023
liu2004 2004 Liu, Y. A Comparative Study on Feature Selection Methods for Drug Discovery. J. Chem.
Inf. Comput. Sci. 2004, 44, 1823−1828.
martin2002 2002 Martin, Y. C.; Kofron, J. L.; Traphagen, L. M. Do Structurally Similar Molecules Have
Similar Biological Activity? J. Med. Chem. 2002, 45, 4350−4358, DOI: 10.1021/jm020155c
nikolova2003 2003 Nikolova, N.; Jaworska, J. Approaches to Measure Chemical Similarity ­ a Review. QSAR
Comb. Sci. 2003, 22, 1006−1026.
oprea2001 2001 Oprea, T. I.; Gottfries, J. Chemography: The Art of Navigating in Chemical Space. J.
Comb. Chem. 2001, 3, 157−166.
puzyn2009 2009 Puzyn, T.; Leszczynski, J.; Cronin, M. T. D. Recent Advances in QSAR Studies: Methods
and Applications; Springer: London, 2009
rahman2009 2009 Rahman, S.; Bashton, M.; Holliday, G.; Schrader, R.; Thornton, J. Small Molecule
Subgraph Detector (SMSD) toolkit. J. Cheminf.Online 2009, 1, No. 12,
raymond2002 2002 Raymond, J.; Willett, P. Maximum common subgraph isomorphism algorithms for the
matching of chemical structures. J. Comput.­Aided Mol. Des. 2002, 16, 521−533.
sun2011 2011 Sun, Y.; Brown, M.; Prapopoulou, M.; Davey, N.; Adams, R.; Moss, G. The application of
stochastic machine learning methods in the prediction of skin penetration. Appl. Soft
Comput. 2011, 11, 2367−2375.
tetko2009 2009 Tetko, I.; Poda, G.; Ostermann, C.; Mannhold, R. Accurate In Silico log P Predictions:
One Can’t Embrace the Unembraceable. QSAR Comb. Sci. 2009, 28, 845−849
todeschini2009 2009 Todeschini, R.; Consonni, V. In Molecular Descriptors for Chemoinformatics; Mannhold,
R., Kubinyi, H., Folkers, G., Eds.; Wiley­ VCH: Weinheim, 2009
tropsha2007 2007 Tropsha, A.; Golbraikh, A. Predictive QSAR modeling workflow, model applicability
domains, and virtual screening. Curr. Pharm. Des.2007, 13, 3494−504.
tropsha2010 2010 Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation.
Mol. Inf. 2010, 29, 476−488
willett2005 2005 Willett, P. Searching Techniques for Databases of Two­ and Three­Dimensional Chemical
Structures. J. Med. Chem. 2005, 48,4183−4199, DOI: 10.1021/jm0582165.
farinha2013 2013 Farinha, C. M., King­Underwood, J., Sousa, M., Correia, A. R., Henriques, B. J., RoxoRosa,
M., Da Paula, A. C., Williams, J., Hirst, S., Gomes, C. M., and Amaral, M. D. (2013)
Revertants, Low Temperature, and Correctors Reveal the Mechanism of F508del­CFTR
Rescue by VX­809 and Suggest Multiple Agents for Full Correction, Chemistry & biology
20, 943­955.Jul 25.
pesquita2009 2009 C Pesquita, D Faria, AO Falcão, P Lord, FM Couto 2009 Semantic similarity in biomedical
ontologies. PLoS computational biology 5 (7), e1000443